Using a novel high-throughput screening process, scientists have for the first time identified molecules with the potential to block the accumulation of a toxic eye protein that can lead to early onset of glaucoma.
Glaucoma is a group of diseases that can damage the eye's optic nerve and cause vision loss and blindness. Elevated eye pressure is the main risk factor for optic nerve damage.
Researchers have implicated a mutant form of a protein called myocilin as a possible root cause of this increased eye pressure. Mutant myocilin is toxic to the cells in the part of the eye that regulates pressure. These genetically inherited mutants of myocilin clump together in the front of the eye, preventing fluid flow out of the eye, which then raises eye pressure. This cascade of events can lead to early onset-glaucoma, which affects several million people from childhood to age 35.
To find molecules that bind to mutant myocilin and block its aggregation, researchers designed a simple, high-throughput assay and then screened a library of compounds. They identified two molecules with potential for future drug development to treat early onset glaucoma.
"These are really the first potential drug targets for glaucoma," said Raquel Lieberman, an associate professor in the School of Chemistry and Biochemistry at the Georgia Institute of Technology in Atlanta, whose lab led the research.
Lieberman presented her findings on January 20 at the Society for Laboratory Automation and Screening conference in San Diego, Calif.
The study was published on Nov. 26, 2013, in the journal ACS Chemical Biology. The National Institutes of Health and the Pew Scholar in Biomedical Sciences program provided support for the research. The work was a collaboration involving Georgia Tech, Emory University and the University of South Florida.
Ref : 1. http://pubs.acs.org/doi/abs/10.1021/cb4007776
2. http://www.sciencedirect.com/science/article/pii/S0022283613007407