Showing posts with label enzyme. Show all posts
Showing posts with label enzyme. Show all posts

Friday, October 17, 2014

'Programmable' antibiotic harnesses an enzyme to attack drug-resistant microbes


Rockefeller University researchers colonized mouse skin with a mix of bacterial cells, some resistant to the antibiotic kanamycin. They made the resistant cells glow (left) and treated the mix with an enzyme that targeted and killed off most resistant cells (right).

Conventional antibiotics are indiscriminate about what they kill, a trait that can lead to complications for patients and can contribute to the growing problems of antibiotic resistance. But a a 'programmable' antibiotic would selectively target only the bad bugs, particularly those harboring antibiotic resistance genes, and leave beneficial microbes alone.

Researchers at Rockefeller University and their collaborators are working on a smarter antibiotic. And in research to be published October 5 in Nature Biotechnology, the team describes a 'programmable' antibiotic technique that selectively targets the bad bugs, particularly those harboring antibiotic resistance genes, while leaving other, more innocent microbes alone.
"In experiments, we succeeded in instructing a bacterial enzyme, known as Cas9, to target a particular DNA sequence and cut it up," says lead researcher Luciano Marraffini, head of the Laboratory of Bacteriology. "This selective approach leaves the healthy microbial community intact, and our experiments suggest that by doing so you can keep resistance in check and so prevent certain types of secondary infections, eliminating two serious hazards associated with treatment by classical antibiotics."
The new approach could, for instance, reduce the risk of C. diff, a severe infection of the colon, caused by the Clostridium difficile bacterium, that is associated with prolonged courses of harsh antibiotics and is a growing public health concern.
The Cas9 enzyme is part of a defense system that bacteria use to protect themselves against viruses. The team coopted this bacterial version of an immune system, known as a CRISPR (clustered regularly interspaced short palindromic repeats) system and turned it against some of the microbes. CRISPR systems contain unique genetic sequences called spacers that correspond to sequences in viruses. CRISPR-associated enzymes, including Cas9, use these spacer sequences as guides to identify and destroy viral invaders.
The researchers were able to direct Cas9 at targets of their choosing by engineering spacer sequences to match bacterial genes then inserting these sequences into a cell along with the Cas9 gene. The cell's own machinery then turns on the system. Depending on the location of the target in a bacterial cell, Cas9 may kill the cell or it may eradicate the target gene. In some cases, a treatment may prevent a cell from acquiring resistance, they found.
"We previously showed that if Cas9 is programmed with a target from a bacterial genome, it will kill the bacteria. Building on that work, we selected guide sequences that enabled us to selectively kill a particular strain of microbe from within a mixed population," says first author David Bikard, a former Rockefeller postdoc who is now at the Pasteur Institute in Paris.