After studying how samples of GIST responded to various concentrations of the 89 drugs in the laboratory, Dr. Duensing and her colleagues identified 37 compounds that showed some anticancer activity in at least one of the concentrations tested. Importantly, they noted that the most promising candidates all belonged to only two major drug classes: inhibitors of gene transcription and so-called topoisomerase II inhibitors. Based on these findings, the research team selected the two most promising compounds for further testing - gene transcription inhibitor mithramycin A (left structure below) , which is in clinical trials to treat Ewing sarcoma, and topoisomerase II inhibitor mitoxantrone (beow right structure), which is used in metastatic breast cancer and leukemia.
Both drugs were highly effective in fighting GIST in laboratory tests. Moreover, the mechanism of action of each drug was linked to the specific underlying biology of these tumors.
"These are very encouraging results," said Dr. Duensing. "The next step will be moving our findings to clinical exploration to see if the results we found in the lab hold up in patients."
Old FDA-approved drugs may hold promise for treatment of rare, drug-resistant cancer
Ref : http://www.upmc.com/media/NewsReleases/2014/Pages/upci-scientists-detect-therapy-for-drug-resistant-cancer.aspx
Ref : http://www.upmc.com/media/NewsReleases/2014/Pages/upci-scientists-detect-therapy-for-drug-resistant-cancer.aspx