Showing posts with label tamoxifen. Show all posts
Showing posts with label tamoxifen. Show all posts

Monday, November 23, 2015

Tamoxifen drug clears MRSA, reduces mortality


In continuation of my update on Tamoxifen
Tamoxifen2DACS.svg


Researchers at University of California, San Diego School of Medicine and Skaggs School of Pharmacy and Pharmaceutical Sciences have found that the breast cancer drug tamoxifen gives white blood cells a boost, better enabling them to respond to, ensnare and kill bacteria in laboratory experiments. Tamoxifen treatment in mice also enhances clearance of the antibiotic-resistant bacterial pathogen MRSA and reduces mortality.

The study is published October 13 by Nature Communications.

"The threat of multidrug-resistant bacterial pathogens is growing, yet the pipeline of new antibiotics is drying up. We need to open the medicine cabinet and take a closer look at the potential infection-fighting properties of other drugs that we already know are safe for patients," said senior author Victor Nizet, MD, professor of pediatrics and pharmacy. "Through this approach, we discovered that tamoxifen has pharmacological properties that could aid the immune system in cases where a patient is immunocompromised or where traditional antibiotics have otherwise failed."

Tamoxifen targets the estrogen receptor, making it particularly effective against breast cancers that display the molecule abundantly. But some evidence suggests that tamoxifen has other cellular effects that contribute to its effectiveness, too. For example, tamoxifen influences the way cells produce fatty molecules, known as sphingolipids, independent of the estrogen receptor. Sphingolipids, and especially one in particular, ceramide, play a role in regulating the activities of white blood cells known as neutrophils.

"Tamoxifen's effect on ceramides led us to wonder if, when it is administered in patients, the drug would also affect neutrophil behavior," said first author Ross Corriden, PhD, project scientist in the UC San Diego School of Medicine Department of Pharmacology.

To test their theory, the researchers incubated human neutrophils with tamoxifen. Compared to untreated neutrophils, they found that tamoxifen-treated neutrophils were better at moving toward and phagocytosing, or engulfing, bacteria. Tamoxifen-treated neutrophils also produced approximately three-fold more neutrophil extracellular traps (NETs), a mesh of DNA, antimicrobial peptides, enzymes and other proteins that neutrophils spew out to ensnare and kill pathogens. Treating neutrophils with other molecules that target the estrogen receptor had no effect, suggesting that tamoxifen enhances NET production in a way unrelated to the estrogen receptor. Further studies linked the tamoxifen effect to its ability to influence neutrophil ceramide levels.

Ref : http://www.nature.com/ncomms/2015/151013/ncomms9369/full/ncomms9369.html

Thursday, August 22, 2013

Sunday, January 20, 2013

Tamoxifen can counteract some pathologic features in mouse model of DMD

 In continuation of my update on Tamoxifen

Using the mdx5Cv mouse model of DMD, investigators found that tamoxifen, given orally for more than a year, "caused remarkable improvements of muscle force and of diaphragm and cardiac structure," according to lead author Olivier M. Dorchies, PhD, of the Department of Pharmacology, Geneva-Lausanne School of Pharmaceutical Sciences of the University of Geneva and University of Lausanne. For instance, in the heart, fibrosis was diminished by approximately 50%. In the diaphragm, the muscle of the dystrophic mouse thought to be most like that of human DMD, tamoxifen reduced fibrosis while increasing thickness as well as the number and average diameter of muscle fibers. The net effect was that tamoxifen raised the amount of contractile tissue available for respiration by 72%.


Patients with DMD show muscle degeneration, and their muscle fibers become abnormally susceptible to stress. In this animal study, tamoxifen improved the structure of leg muscles, slowed muscle contraction, increased overall muscle function, and made leg muscles more resistant to repetitive stimulation and fatigue. In fact, tamoxifen rendered dystrophic muscles even stronger than those of non-dystrophic control mice. "Our findings of a slower rate of contraction and an enhanced resistance to fatigue in muscles from tamoxifen-treated dystrophic mice are of significance for the pathophysiology of muscular dystrophy," say the authors.


More : http://www.journals.elsevierhealth.com/periodicals/ajpa/article/S0002-9440%2811%2901061-3/abstract
 

Sunday, February 21, 2010

New strategy to overcome drug resistance (tamoxifen) in breast cancer ?

A solution to tamoxifen resistance is sorely needed, and if a strategy like this can work, it would make a difference in our clinical care of breast cancer,” says the study’s lead investigator. Yes, the researchers lead by Dr. Robert Clarke of Georgetown Lombardi Comprehensive Cancer Center have come with an interesting finding i.e., combining tamoxifen, the world’s most prescribed breast cancer agent  with a compound (Parthenolide,  see left structure source : ChemSpider) found in the flowering plant feverfew (right picture) may prevent initial or future resistance to the drug. 
 
As per the claim by the researchers tamoxifen resistance is regulated by the protein complex NF- κB (nuclear factor kappa B), which is often found to be over-expressed in ER+ breast cancer. NF- κB is known to help cells survive when damaged. Earlier the same researchers have also found that, the resistance to another tamoxifen-like drug, fulvestrant, was controlled by a protein (Bcl2) which is also regulated by NF- κB. These findings  encouraged  them to think that,  blocking NF- κB might affect tamoxifen resistance

Researchers conducted a variety of tests using parthenolide, which has been shown to act on NF- κB. They found that in resistant breast cancer cells, the chemical blocked the activity of NF- κB, making the cells sensitive once again to tamoxifen. Researchers then silenced NF- κB in tamoxifen resistant cells, and found that this had the same effect as using parthenolide. 

They further found that increased activation of NF- κB can alter sensitivity of tamoxifen by modulating the protein CASP8 (which is involved in programmed cell death), which affects Bcl2  and there by  helping  to  push a damaged cell to die.  
 
About Feverfew

Feverfew (Tanacetum parthenium) is edible and medicinal plant and   has a good reputation as alternative medicine and extensive research has proved it to be of special benefit in the treatment of certain types of migraine headaches and rheumatism or arthritis. The plant is rich in sesquiterpene lactones, the principal one being parthenolide. Parthenolide helps prevent excessive clumping of platelets and inhibits the release of certain chemicals, including serotonin and some inflammatory mediators. (other constituents are: pinene, pinene derivatives, bornylacetate, angelate, b-farnesine, spiroketalenol ethers, flavonoid glycosides and costic acid) .

Though the leaves and flowering heads are reported to possess antiinflammatory, antispasmodic, aperient,  sedative, stimulant, stomachic, vasodilator and vermifuge. activities, this type of activity has been reported  for the first time. 
 
Researchers conclude that the chemical, clearly has the potential to be able to figure out fairly  and it can help solve tamoxifen’s resistance problem with a caution that the science is much too early to make any recommendations. Let us wait for some more time.......