Showing posts sorted by date for query Curcumin. Sort by relevance Show all posts
Showing posts sorted by date for query Curcumin. Sort by relevance Show all posts

Friday, March 19, 2021

Botanical drug is shown to help patients with head and neck cancers


In continuation of my update on Curcumin

In a UCLA-led phase I clinical trial, a new plant-based drug called APG-157 showed signs of helping patients fight oral and oropharyngeal cancers. These cancers are located in the head and the neck.

Image result for curcumin STRUCTURE

APG-157  (a botanical drug containing multiple polyphenols, including curcumin see above structure), is made up of multiple compounds produced by plants, including curcumin. UCLA Jonsson Comprehensive Cancer Center researchers found that treatment with this botanical drug resulted in high concentrations of curcumin and its byproducts circulating in the blood and absorbed by tumor tissues within three hours after being taken orally.
APG-157 reduced the concentration of cytokines—proteins involved in inflammation—in the saliva when administered to cancer patients. The therapy also reduced the relative abundance of Bacteroides species, a group of gram-negative bacteria. Gram negative refers to a group of dangerous bacteria that have an outer layer which hides them from the immune system. The relative abundance of gram-negative bacteria compared to the presence of other types of bacteria is correlated with oral cancer.
APG-157 also resulted in the expression of genes that are associated with attracting immune system T cells to the tumor area. This therapy could have a beneficial effect when used in combination with immunotherapy drugs that help immune system T cells recognize and kill tumors.
The treatment did not have any adverse effects on the study's participants.
Cancers of the head and neck account for 4% of all cancers. About 650,000 new cases are reported each year around the world. People with advanced head and neck cancers have a low survival rate and current treatment options such as surgery, radiation and chemotherapy can have adverse effects. Therefore, more effective and less toxic therapies are needed to help improve the quality of life and outcome for those with these cancers.
APG-157 is a botanical drug developed under the FDA's Botanical Drug Guidance, which includes requirements for production of plant-based therapies that are marketed as prescription medications. The drug is made up of botanical compounds including curcumin from the Curcuma longa plant, which is commonly referred to as turmeric and is a member of the ginger family.
Curcumin is one of the medicinally active or therapeutic molecules that has been tested as a possible treatment to help fight multiple cancers because it is an antioxidant that reduces swelling and inflammation. However, there is poor absorption into the bloodstream when curcumin is taken orally. In this study, UCLA researchers found that when APG-157 is taken through oral mucosal absorption, patients have high levels of curcumin circulating in their blood and absorbed by cancer tissues.
UCLA researchers conducted the study of APG-157 comparing 12 people who had oral and oropharyngeal cancer with a control group of 13 people who did not have cancer. The reason both the people with cancer and without cancer were part of the study was to show that the drug was not toxic to either people with cancer or those without cancer.
The medication was given each hour for three hours and was delivered as a lozenge that slowly dissolved in the mouth. Blood and saliva samples were collected beforehand—each of the three hours the medication was administered—and 24 hours after the last dosage. The medication was given to 12 people (some who had cancer and some who did not) and a placebo was given to 13 people. Blood and electrocardiogram tests did not show increased toxicity in the people who took the active medication in comparison with the people who took the placebo, regardless of whether they had cancer or not.
For the cancer patients who took the medication, there was a decrease in Bacteroides and an increase in T cells in the tumor tissue as compared to cancer patients who took the placebo. Neither the subjects nor the investigators knew whether the drug or a placebo was given when reviewing the blood and saliva test results of the blinded study.
APG-157 is a botanical  that has low toxicity. It works effectively to reduce inflammation that contributes to the growth of cancer cells. It also attracts T cells to the tumor micro-environment. When used in combination with immunotherapy drugs, APG-157 might have the ability to make the immune system more effective in attacking head and neck cancers. With potential to inhibit the growth of Bacteroides species, APG-157 could also improve cancer therapy through oral microbial changes.
https://acsjournals.onlinelibrary.wiley.com/doi/abs/10.1002/cncr.32644

Monday, January 29, 2018

FDA-approved drug to treat high blood pressure increases life span in worms

Skeletal formula of hydralazine
UT Southwestern Medical Center researchers find that an FDA-approved drug to treat high blood pressure seems to extend life span in worms via a cell signaling pathway that may mimic caloric restriction.
The drug, hydralazine, extended life span about 25 percent in two strains of C. elegans(roundworms), one a wild type and the other bred to generate high levels of a neurotoxic protein called tau that in humans is associated with Alzheimer's disease.
"This is the first report of hydralazine treatment activating the NRF2/SKN-1 signaling pathway. We found the drug extends the life span of worms as well as or better than other potential anti-aging compounds such as curcumin and metformin. The treatment also appeared to maintain their health as measured by tests of flexibility and wiggling speed," said Dr. Hamid Mirzaei, Assistant Professor of Biochemistry at UT Southwestern and senior author of the study, published today in Nature Communications.
The NRF2 pathway protects human cells from oxidative stress. The body's ability to protect itself against damaging oxygen free radicals diminishes with age, he said.
One of the hallmarks of aging and neurodegenerative diseases such as Alzheimer's and Parkinson's is oxidative stress, which is believed to result cumulatively from inflammatory and infectious illnesses throughout life, Dr. Mirzaei explained. SKN-1, a C. eleganstranscription factor, corresponds to NRF2 in humans. Both play a pivotal role in their respective species' responses to oxidative stress and life span, he said.
The UT Southwestern researchers were searching for a chemical probe they could use in experiments to identify proteins that get oxidized and become toxic during aging. Their screen for a substance that would cross the blood-brain barrier and be nontoxic led them to hydralazine.
"Age-related neurodegenerative diseases are devastating, and those conditions are on the rise due to the increase in the life span of humans. For that reason, it is important to develop treatments to maintain human health as long as possible," said Dr. Mirzaei, who is also an investigator in the Center for Alzheimer's and Neurodegenerative Diseases, part of the Peter O'Donnell Jr. Brain Institute at UT Southwestern.
http://www.utsouthwestern.edu/newsroom/articles/year-2017/hbp-drug.html



Friday, April 28, 2017

Combination of two plant compounds holds promise in treating colon cancer

In combination of my update on curcumin

The combination of two plant compounds that have medicinal properties - curcumin and silymarin - holds promise in treating colon cancer, according Saint Louis University research published in the June 23 issue of the Journal of Cancer.


Skeletal formula Skeletal formula  curcumin


Silibinin skeletal.svg silymarin

Curcumin is the active ingredient in the spice turmeric, which is present in spicy curry dishes, and silymarin is a component of milk thistle, which has been used to treat liver disease.

The researchers and their students studied a line of colon cancer cells in a laboratory model. They found treating the cells initially with curcumin, then with silymarin was more effective in fighting cancer than treating the cells with either phytochemical alone, said Uthayashanker Ezekiel, Ph.D., corresponding author and associate professor of biomedical laboratory science at Saint Louis University.

"The combination of phytochemicals inhibited colon cancer cells from multiplying and spreading. In addition, when the colon cancer cells were pre-exposed to curcumin and then treated with silymarin, the cells underwent a high amount of cell death," Ezekiel said.

"Phytochemicals may offer alternate therapeutic approaches to cancer treatments and avoid toxicity problems and side effects that chemotherapy can cause."

Ezekiel noted the research is a preliminary cell study, with more research ahead before scientists know if the compounds are an effective treatment for people who have colon cancer. He saw promise in using the phytochemicals to help prevent colon cancer, which frequently is caused by lifestyle factors, such as diet.

Scientists next would need to study how the curcumin and silymarin impact the actions of molecules, such as genetic transcription and expression, that cause cells to change, Ezekiel said. Then the compounds would be studied in an animal model, then in humans.

"Concentrations of curcumin and silymarin that are too high could be harmful to people," he said. "We still have much to learn, and for now, it's so much safer to add a little spice to your diet and get your curcumin from foods that contain turmeric, such as curry, rather than taking high doses of the compound."

Friday, June 5, 2015

BCM-95 Curcumin improves chemotherapy's effectiveness in killing chemoresistant cancer cells

The structure of curcumin, officially known as diferuloylmethane, is two ferulic acid moeities bound together with an additional carbon (methane) to abridge the carboxyl groups. It can exist in a enol form (pictured below) or a keto form, which is molecularily symmetrical with two ketone groups on the backbone.

Cancer cell resistance to chemotherapy is a major cause of death in patients with colorectal cancer. In a first-of-its-kind study, BCM-95® Curcumin was found to improve chemotherapy's effectiveness in killing chemoresistant cells via a mechanism not previously identified. [Toden S, Okugawa Y, Jascur T, Wodarz D, Komarova N, Buhrmann C, Shakibaei M, Boland R, and Goel A. Curcumin mediates chemosensitization to 5-flurouracil through miRNA-induced suppression of epithelial-to-mesenchymal transition in chemoresistant colorectal cancer. Carcinogenesis. 2015; 1-13. Doi:10.1093/carcin/bvg006]

"Chemoresistance occurs when the cancer cell is no longer responding to the cancer-killing effects of chemotherapy. The cancer cell 'learns' how to survive the chemo. It is a huge problem," states Ajay Goel, Ph.D., Director of Center for Gastrointestinal Research, and Director of Epigenetics, Cancer Prevention and Genomics, Baylor Research Institute, Baylor University Medical Center, Dallas, TX, lead author of the study.

Saturday, December 6, 2014

Curcumin and tackling mesothelioma: an interview with Dr. Afshin Dowlati



Skeletal formula Skeletal formula





In continuation of my update on Curcumin





Dr. Afshin DowlatiTHOUGHT LEADERS SERIES...insight from the world’s leading experts

Research focusing on mesothelioma













Curcumin and tackling mesothelioma: an interview with Dr. Afshin Dowlati

Monday, May 12, 2014

MSU research pushes promising molecule toward clinical trials for treatment of neurological disorders

Research at Michigan State University, published in the Journal of Biological Chemistry, shows that a small "molecular tweezer" keeps proteins from clumping, or aggregating, the first step of neurological disorders such as Parkinson's disease, Alzheimer's disease and Huntington's disease.

The results are pushing the promising molecule toward clinical trials and actually becoming a new drug, said Lisa Lapidus, MSU associate professor of physics and astronomy and co-author of the paper.

"By the time patients show symptoms and go to a doctor, aggregation already has a stronghold in their brains," she said. "In the lab, however, we can see the first steps, at the very place where the drugs could be the most effective. This could be a strong model for fighting Parkinson's and other diseases that involve neurotoxic aggregation."

Lapidus' lab uses lasers to study the speed of protein reconfiguration before aggregation, a technique Lapidus pioneered. Proteins are chains of amino acids that do most of the work in cells. Scientists understand protein structure, but they don't know how they are built - a process known as folding.

Lapidus' lab has shed light on the process by correlating the speed at which an unfolded protein changes shape, or reconfigures, with its tendency to clump or bind with other proteins. If reconfiguration is much faster or slower than the speed at which proteins bump into each other, aggregation is slow, but if reconfiguration is the same speed, aggregation is fast. 

Srabasti Acharya, lead author and doctoral candidate in Lapidus' lab, tested the molecule, CLR01, (see structure) which was patented jointly by researchers at the University of Duisburg-Essen (Germany) and UCLA. CLR01 binds to the protein and prevents aggregation by speeding up reconfiguration. It's like a claw that attaches to the amino acid lysine, which is part of the protein.

This work was preceded by Lapidus' research involving the spice curcumin. While the spice molecules put the researchers on a solid path, the molecules weren't viable drug candidates because they cannot cross the blood-brain barrier, or BBB, the filter that controls what chemicals reach the brain.


Friday, May 9, 2014

MSU research pushes promising molecule toward clinical trials for treatment of neurological disorders

Research at Michigan State University, published in the Journal of Biological Chemistry, shows that a small "molecular tweezer" keeps proteins from clumping, or aggregating, the first step of neurological disorders such as Parkinson's disease, Alzheimer's disease and Huntington's disease.

The results are pushing the promising molecule toward clinical trials and actually becoming a new drug, said Lisa Lapidus, MSU associate professor of physics and astronomy and co-author of the paper.

"By the time patients show symptoms and go to a doctor, aggregation already has a stronghold in their brains," she said. "In the lab, however, we can see the first steps, at the very place where the drugs could be the most effective. This could be a strong model for fighting Parkinson's and other diseases that involve neurotoxic aggregation."

Lapidus' lab uses lasers to study the speed of protein reconfiguration before aggregation, a technique Lapidus pioneered. Proteins are chains of amino acids that do most of the work in cells. Scientists understand protein structure, but they don't know how they are built - a process known as folding.

Lapidus' lab has shed light on the process by correlating the speed at which an unfolded protein changes shape, or reconfigures, with its tendency to clump or bind with other proteins. If reconfiguration is much faster or slower than the speed at which proteins bump into each other, aggregation is slow, but if reconfiguration is the same speed, aggregation is fast. 

Srabasti Acharya, lead author and doctoral candidate in Lapidus' lab, tested the molecule, CLR01, (see structure) which was patented jointly by researchers at the University of Duisburg-Essen (Germany) and UCLA. CLR01 binds to the protein and prevents aggregation by speeding up reconfiguration. It's like a claw that attaches to the amino acid lysine, which is part of the protein.

This work was preceded by Lapidus' research involving the spice curcumin. While the spice molecules put the researchers on a solid path, the molecules weren't viable drug candidates because they cannot cross the blood-brain barrier, or BBB, the filter that controls what chemicals reach the brain.


Thursday, May 8, 2014

MSU research pushes promising molecule toward clinical trials for treatment of neurological disorders

Research at Michigan State University, published in the Journal of Biological Chemistry, shows that a small "molecular tweezer" keeps proteins from clumping, or aggregating, the first step of neurological disorders such as Parkinson's disease, Alzheimer's disease and Huntington's disease.

The results are pushing the promising molecule toward clinical trials and actually becoming a new drug, said Lisa Lapidus, MSU associate professor of physics and astronomy and co-author of the paper.

"By the time patients show symptoms and go to a doctor, aggregation already has a stronghold in their brains," she said. "In the lab, however, we can see the first steps, at the very place where the drugs could be the most effective. This could be a strong model for fighting Parkinson's and other diseases that involve neurotoxic aggregation."

Lapidus' lab uses lasers to study the speed of protein reconfiguration before aggregation, a technique Lapidus pioneered. Proteins are chains of amino acids that do most of the work in cells. Scientists understand protein structure, but they don't know how they are built - a process known as folding.

Lapidus' lab has shed light on the process by correlating the speed at which an unfolded protein changes shape, or reconfigures, with its tendency to clump or bind with other proteins. If reconfiguration is much faster or slower than the speed at which proteins bump into each other, aggregation is slow, but if reconfiguration is the same speed, aggregation is fast. 

Srabasti Acharya, lead author and doctoral candidate in Lapidus' lab, tested the molecule, CLR01, (see structure) which was patented jointly by researchers at the University of Duisburg-Essen (Germany) and UCLA. CLR01 binds to the protein and prevents aggregation by speeding up reconfiguration. It's like a claw that attaches to the amino acid lysine, which is part of the protein.

This work was preceded by Lapidus' research involving the spice curcumin. While the spice molecules put the researchers on a solid path, the molecules weren't viable drug candidates because they cannot cross the blood-brain barrier, or BBB, the filter that controls what chemicals reach the brain.


Wednesday, May 7, 2014

MSU research pushes promising molecule toward clinical trials for treatment of neurological disorders

Research at Michigan State University, published in the Journal of Biological Chemistry, shows that a small "molecular tweezer" keeps proteins from clumping, or aggregating, the first step of neurological disorders such as Parkinson's disease, Alzheimer's disease and Huntington's disease.

The results are pushing the promising molecule toward clinical trials and actually becoming a new drug, said Lisa Lapidus, MSU associate professor of physics and astronomy and co-author of the paper.

"By the time patients show symptoms and go to a doctor, aggregation already has a stronghold in their brains," she said. "In the lab, however, we can see the first steps, at the very place where the drugs could be the most effective. This could be a strong model for fighting Parkinson's and other diseases that involve neurotoxic aggregation."

Lapidus' lab uses lasers to study the speed of protein reconfiguration before aggregation, a technique Lapidus pioneered. Proteins are chains of amino acids that do most of the work in cells. Scientists understand protein structure, but they don't know how they are built - a process known as folding.

Lapidus' lab has shed light on the process by correlating the speed at which an unfolded protein changes shape, or reconfigures, with its tendency to clump or bind with other proteins. If reconfiguration is much faster or slower than the speed at which proteins bump into each other, aggregation is slow, but if reconfiguration is the same speed, aggregation is fast. 

Srabasti Acharya, lead author and doctoral candidate in Lapidus' lab, tested the molecule, CLR01, (see structure) which was patented jointly by researchers at the University of Duisburg-Essen (Germany) and UCLA. CLR01 binds to the protein and prevents aggregation by speeding up reconfiguration. It's like a claw that attaches to the amino acid lysine, which is part of the protein.

This work was preceded by Lapidus' research involving the spice curcumin. While the spice molecules put the researchers on a solid path, the molecules weren't viable drug candidates because they cannot cross the blood-brain barrier, or BBB, the filter that controls what chemicals reach the brain.


Tuesday, May 6, 2014

MSU research pushes promising molecule toward clinical trials for treatment of neurological disorders

Research at Michigan State University, published in the Journal of Biological Chemistry, shows that a small "molecular tweezer" keeps proteins from clumping, or aggregating, the first step of neurological disorders such as Parkinson's disease, Alzheimer's disease and Huntington's disease.

The results are pushing the promising molecule toward clinical trials and actually becoming a new drug, said Lisa Lapidus, MSU associate professor of physics and astronomy and co-author of the paper.

"By the time patients show symptoms and go to a doctor, aggregation already has a stronghold in their brains," she said. "In the lab, however, we can see the first steps, at the very place where the drugs could be the most effective. This could be a strong model for fighting Parkinson's and other diseases that involve neurotoxic aggregation."

Lapidus' lab uses lasers to study the speed of protein reconfiguration before aggregation, a technique Lapidus pioneered. Proteins are chains of amino acids that do most of the work in cells. Scientists understand protein structure, but they don't know how they are built - a process known as folding.

Lapidus' lab has shed light on the process by correlating the speed at which an unfolded protein changes shape, or reconfigures, with its tendency to clump or bind with other proteins. If reconfiguration is much faster or slower than the speed at which proteins bump into each other, aggregation is slow, but if reconfiguration is the same speed, aggregation is fast. 

Srabasti Acharya, lead author and doctoral candidate in Lapidus' lab, tested the molecule, CLR01, (see structure) which was patented jointly by researchers at the University of Duisburg-Essen (Germany) and UCLA. CLR01 binds to the protein and prevents aggregation by speeding up reconfiguration. It's like a claw that attaches to the amino acid lysine, which is part of the protein.

This work was preceded by Lapidus' research involving the spice curcumin. While the spice molecules put the researchers on a solid path, the molecules weren't viable drug candidates because they cannot cross the blood-brain barrier, or BBB, the filter that controls what chemicals reach the brain.


Monday, May 5, 2014

MSU research pushes promising molecule toward clinical trials for treatment of neurological disorders

Research at Michigan State University, published in the Journal of Biological Chemistry, shows that a small "molecular tweezer" keeps proteins from clumping, or aggregating, the first step of neurological disorders such as Parkinson's disease, Alzheimer's disease and Huntington's disease.

The results are pushing the promising molecule toward clinical trials and actually becoming a new drug, said Lisa Lapidus, MSU associate professor of physics and astronomy and co-author of the paper.

"By the time patients show symptoms and go to a doctor, aggregation already has a stronghold in their brains," she said. "In the lab, however, we can see the first steps, at the very place where the drugs could be the most effective. This could be a strong model for fighting Parkinson's and other diseases that involve neurotoxic aggregation."

Lapidus' lab uses lasers to study the speed of protein reconfiguration before aggregation, a technique Lapidus pioneered. Proteins are chains of amino acids that do most of the work in cells. Scientists understand protein structure, but they don't know how they are built - a process known as folding.

Lapidus' lab has shed light on the process by correlating the speed at which an unfolded protein changes shape, or reconfigures, with its tendency to clump or bind with other proteins. If reconfiguration is much faster or slower than the speed at which proteins bump into each other, aggregation is slow, but if reconfiguration is the same speed, aggregation is fast. 

Srabasti Acharya, lead author and doctoral candidate in Lapidus' lab, tested the molecule, CLR01, (see structure) which was patented jointly by researchers at the University of Duisburg-Essen (Germany) and UCLA. CLR01 binds to the protein and prevents aggregation by speeding up reconfiguration. It's like a claw that attaches to the amino acid lysine, which is part of the protein.

This work was preceded by Lapidus' research involving the spice curcumin. While the spice molecules put the researchers on a solid path, the molecules weren't viable drug candidates because they cannot cross the blood-brain barrier, or BBB, the filter that controls what chemicals reach the brain.


Friday, July 12, 2013

Curcumin may protect premature infants' lungs

In continuation of my update on the usefulness of Curcumin updates

Turmeric, a key ingredient in spicy curry dishes, has long been known to have medicinal values. Now new research finds a substance in turmeric, curcumin, may provide lasting protection against potentially deadly lung damage in premature infants...

A study, published online by the American Journal of Physiology, Lung Cellular and Molecular Physiology, found curcumin provided protection against bronchopulmonary dysplasia (BDP), a condition characterized by scarring and inflammation, and against hyperoxia, in which too much oxygen enters the body through the lungs, for up to 21 days after birth. A previous LA BioMed study found curcumin provided protection for up to seven days after birth.

"This is the first study to find long-term benefits of using curcumin to protect lung function in premature infants," said Virender K. Rehan, MD, the LA BioMed lead researcher who authored the study. "Curcumin is known to have potent antioxidant, anti-inflammatory and anti-microbial properties, making it a promising therapy for premature infants who require oxygen therapy after birth."

BDP is now the most common chronic lung disease of infancy in the U.S. With more premature babies surviving because of improvements in neonatal care, the cases of BPD have increased. A 2010 study found 67.3% of babies born at 22-25 weeks of gestation developed BPD, compared to 36.6% of infants born at 26-30 weeks of gestation.


Ref : http://ajplung.physiology.org/content/early/2013/06/24/ajplung.00082.2013

Curcumin may protect premature infants' lungs

Friday, May 24, 2013

Scientists Uncover How Grapefruits Provide a Secret Weapon in Medical Drug Delivery...

Lipids (right panel first three tubes) derived from grapefruit. GNVs can efficiently deliver a variety of therapeutic agents, including DNA, RNA (DIR-GNVs), proteins and anti-cancer drugs (GNVs-Drugs) as demonstrated in this study. University of Louisville researchers have uncovered how to create nanoparticles using natural lipids derived from grapefruit, and have discovered how to use them as drug delivery vehicles.


"These nanoparticles, which we've named grapefruit-derived nanovectors (GNVs), are derived from an edible plant, and we believe they are less toxic for patients, result in less biohazardous waste for the environment, and are much cheaper to produce at large scale than nanoparticles made from synthetic materials," Zhang said.


The researchers demonstrated that GNVs can transport various therapeutic agents, including anti-cancer drugs, DNA/RNA and proteins such as antibodies. Treatment of animals with GNVs seemed to cause less adverse effects than treatment with drugs encapsulated in synthetic lipids.

"Our GNVs can be modified to target specific cells -- we can use them like missiles to carry a variety of therapeutic agents for the purpose of destroying diseased cells," he said. "Furthermore, we can do this at an affordable price."

The therapeutic potential of grapefruit derived nanoparticles was further validated through a Phase 1 clinical trial for treatment of colon cancer patients. So far, researchers have observed no toxicity in the patients who orally took the anti-inflammatory agent curcumin encapsulated in grapefruit nanoparticles.

Ref : http://www.nature.com/ncomms/journal/v4/n5/full/ncomms2886.html

Saturday, August 18, 2012

Turmeric stopped potentially deadly Rift Valley fever virus from multiplying in infected cells

In continuation of my update on curcumin.....

Curcumin,  found in turmeric  stopped the potentially deadly Rift Valley Fever virus from multiplying in infected cells, says Aarthi Narayanan, lead investigator on a new study and a research assistant professor in Mason's National Center for Biodefense and Infectious Diseases.


Monday, June 4, 2012

Curry spice component may help slow prostate tumor growth

In continuation of my update on curcumin,,,,

Curcumin, an active component of the Indian curry spice turmeric, may help slow down tumor growth in castration-resistant prostate cancer patients on androgen deprivation therapy (ADT), a study from researchers at Jefferson's Kimmel Cancer Center suggests. More

 Curry spice component may help slow prostate tumor growth

Saturday, June 2, 2012

A trial looking at curcumin and FOLFOX for advanced bowel cancer (CUFOX)

In continuation of  my update on curcumin
An upcoming clinical trial conducted by the Cancer Research UK and National Institute for Health Research Experimental Cancer Medicine Centre (ECMC) in Leicester, England will evaluate the effectiveness of curcumin, a compound that occurs in turmeric, as a means of improving the results of standard chemotherapy for metastatic colon cancer. The compound has been found to enhance chemotherapy's ability to kill colon cancer cells in previous research involving cell cultures. 

Doctors often treat bowel cancer that has spread with chemotherapy. The combination of chemotherapy they usually use is called FOLFOX. It is made up of the drugs folinic acid (leucovorin), fluorouracil (5FU) and oxaliplatin. But this doesn’t always work very well.  And it often causes side-effects such as numbness and tingling in hands and feet (peripheral neuropathy). This means the doctors sometimes need to lower the dose or even stop chemotherapy, so they are keen to improve treatment.

Curcumin is a plant extract found in the spice turmeric and is found in many everyday foods. We know from research that curcumin can help shrink tumours in the laboratory. It has also been used in several studies involving patients with a range of conditions, including cancer.



Sunday, December 19, 2010

Compound derived from curry spice is neuroprotective against stroke and traumatic brain injury


A synthetic derivative of the curry spice turmeric, made by scientists at the Salk Institute for Biological Studies, dramatically improves the behavioral and molecular deficits seen in animal models of ischemic stroke and traumatic brain injury (TBI). Two new studies suggest that the novel compound may have clinical promise for these conditions, which currently lack good therapies.

In earlier studies, David R. Schubert, Ph.D., and Pamela Maher, Ph.D., in the Salk Cellular Neurobiology Laboratory had developed a series of new compounds using a novel drug discovery paradigm that starts with natural products derived from plants; it then calls for selecting synthetic derivatives that show efficacy in multiple assays testing protection against various aspects of the nerve cell damage and death that occur in brain injuries and in age-associated neurodegenerative diseases. One compound, called CNB-001, which was derived from curcumin, the active ingredient in the spice turmeric, proved highly neuroprotective in all of the assays; it also enhanced memory in normal animals.... 

Thursday, October 21, 2010

Turmeric component (curcumin) enhances chemotherapy's suppression of head and neck cancer

In continuation of my update on Curcumin, I found this info interesting to share with.., i.e.,  researchers with UCLA's Jonsson Cancer Center have found, when combined with the drug Cisplatin, turmeric enhances the chemotherapy's suppression of head and neck cancer cell growth. Previous studies have shown it can suppress the growth of certain cancers. The study, done in cells in Petri dishes and then in mouse models is of great importance.

A 2005 study by Wang and Srivatsan first showed that curcumin suppressed the growth of head and neck cancer cells, first in cells and then in mouse models. In the animal studies, the curcumin was applied directly onto the tumors in paste form because it did not dissolve in saline, which would have allowed it to be injected. n need of a better way to deliver the curcumin, the team collaborated with Dr. Kapil Mehta of M.D. Anderson Cancer Center and found that encapsulating the curcumin in a liposome, an artificially prepared vehicle that enclosed the spice component within its membrane, made the treatment injectable. The curcumin was injected into the tail vein of a mouse, where it circulated into the blood stream, slowing down and eventually stopping the cancer growth, a study in 2008 found.

"This was a very positive finding, developing an efficient way to deliver the treatment," Wang said. "Our study also showed that the curcumin was very well tolerated."


In this study, the team wanted to combine the curcumin with the chemotherapeutic drug Cisplatin, which is very toxic at the doses needed to fight head and neck cancers, damaging kidneys, the ears and the bone marrow. They hoped that if they added curcumin to the mix, they might be able to lower the Cisplatin dose and cause less organ damage. Their finding, that the curcumin made the Cisplatin work better, was very promising.



More....


Tuesday, March 10, 2009

Mode of action of curcumin establlished ?


In India, turmeric (Haldi-in Hindi, Arishin-in Kannada) has been used in food preparation. Curcumin (see the structure left side, is the principal curcuminoid). We used to read about its many properties like antitumour, antioxidant, antimyloid, antiarthritic and many others. Though scientific explanations were not established, still then our forefathers used turmeric for many centuries. Even it has been used in home remedies for cold, cough and as an antiseptic etc. But so for a little was known about the mode of action or how actually it works inside the body. Thanks to Dr.Rammoorthy, a professor of chemistry and biophysics at University of Michigan, has come up with explanation for this.

The authors claims that "curcumin acts as a disciplinarian, inserting itself into cell membranes and making them more orderly, a move that improves cells' resistance to infection and malignancy. More interesting is the technique they use is solid-state NMR spectroscopy(two-dimensional solid-state NMR technique). This technique which is unique helps to reveal atom-level details of these important molecules and the membranous milieu in which they operate.

In a related line of research, Ramamoorthy's team is using the same methods to investigate the effects of curcumin on the formation of amyloids---clumps of fibrous protein believed to be involved in type 2 diabetes, Alzheimer's disease, Parkinson's disease, and many other maladies. Congrats, Dr.Rammoorthy, for this achievement. If proven further details, hope something intersting and useful info for mankind. More..