- Importantly, they efficiently targeted the colon. They were absorbed mainly by cells in the lining of the intestines, where IBD inflammation occurs.
- The particles reduced acute colitis and prevented chronic colitis and colitis-associated cancer.
- They enhanced intestinal repair. Specifically, they boosted the survival and proliferation of the cells that make up the lining of the colon. They also lowered the production of proteins that promote inflammation, and raised the levels of proteins that fight inflammation.
Monday, May 29, 2017
Ginger-derived nanoparticles may be good medicine for inflammatory bowel disease
Thursday, April 27, 2017
Cinnamon treatment turns poor-learning mice into good ones, research shows
"The increase in learning in poor-learning mice after cinnamon treatment was significant," says Pahan. "For example, poor-learning mice took about 150 seconds to find the right hole in the Barnes maze test. On the other hand, after one month of cinnamon treatment, poor-learning mice were finding the right hole within 60 seconds."
"Little is known about the changes that occur in the brains of poor learners," says Pahan. "We saw increases in GABRA5 and a decrease in CREB in the hippocampus of poor learners. Interestingly, these particular changes were reversed by one month of cinnamon treatment."
"Simply smelling the spice may not help because cinnamaldehyde should be metabolized into cinnamic acid and then sodium benzoate," explains Pahan. "For metabolism [to occur], cinnamaldehyde should be within the cell."
"Individual differences in learning and educational performance is a global issue, he says. "In many cases, we find two students of the same background studying in the same class, and one turns out to be a poor learner and does worse than the other academically. Now we need to find a way to test this approach in poor learners. If these results are replicated in poor-learning students, it would be a remarkable advance. At present, we are not using any other spice or natural substance."
Wednesday, April 22, 2015
Bitter gourd(Karela) leaves Medicinal uses
Phytochemical constituents of Bitter gourd Leaves
Medicinal Uses of Bitter gourd Leaves
- Drinking 10-15 ml juice of Karela leaves is beneficial in arthritis.
- Ascite (gastroenterological term for an accumulation of fluid in the peritoneal cavity)
- Extract 10-15 ml juice of leaves and add some honey and drink.
Tuesday, March 17, 2015
Honey offers new approach to fighting antibiotic resistance ............
Saturday, March 24, 2012
Healthy lactic acid bacteria in wild honey bees can fight bacterial infections
Sunday, May 8, 2011
Wednesday, July 21, 2010
How honey kills bacteria..........
We know that, honey has antibiotic activity and has been used specially in burn injuries. Now researchers lead by Dr.Sebastian A.J. Zaat, of Department of Medical Microbiology at the Academic Medical Center in Amsterdam, have come up with an explanation for this antibiotic activity of honey. This first explanation to explain how honey kills bacteria. Specifically, the research shows that bees make a protein that they add to the honey, called defensin-1, which could one day be used to treat burns and skin infections and to develop new drugs that could combat antibiotic-resistant infections.
"We have completely elucidated the molecular basis of the antibacterial activity of a single medical-grade honey, which contributes to the applicability of honey in medicine," said Dr. Sebastian A.J. Zaat...
To make the discovery, Dr. Zaat and colleagues investigated the antibacterial activity of medical-grade honey in test tubes against a panel of antibiotic-resistant, disease-causing bacteria. They developed a method to selectively neutralize the known antibacterial factors in honey and determine their individual antibacterial contributions. Ultimately, researchers isolated the defensin-1 protein, which is part of the honey bee immune system and is added by bees to honey. All bacteria tested, including Bacillus subtilis, methicillin-resistant Staphylococcus aureus, extended-spectrum β-lactamase producing Escherichia coli, ciprofloxacin-resistant Pseudomonas aeruginosa, and vancomycin-resistant Enterococcus faecium, were killed by 10–20% (v/v) honey, whereas 40% (v/v) of a honey-equivalent sugar solution was required for similar activity.
After analysis, the scientists concluded that the vast majority of honey's antibacterial properties come from that protein. This information also sheds light on the inner workings of honey bee immune systems, which may one day help breeders create healthier and heartier honey bees.
http://www.fasebj.org/cgi/content/abstract/24/7/2576