In continuation of my update on broccoli...
Children who suffer from Hutchinson-Gilford Progeria syndrome age prematurely due to a defective protein in their cells. Scientists at Technische Universität München have now identified another important pathological factor: the system responsible for removing cellular debris and for breaking down defective proteins operates at lower levels in HGPS cells than in normal cells. The researchers have succeeded in reactivating protein breakdown in HGPS cells and thus reducing disease-related defects by using a substance from broccoli.
Most Hutchinson-Gilford Progeria Syndrome (HGPS) patients carry a mutation that produces a defective form of the protein lamin A. This defective protein is referred to as progerin. Normal lamin A is a key component of the matrix surrounding the DNA in the cell nucleus and plays a role in gene expression. By contrast, the defective form, progerin, is not functional but is nevertheless continuously synthesized. The result is that progerin accumulates in the nucleus and causes the cell to "age". Consequently, HGPS patients develop classic diseases of old age such as atherosclerosis, osteoporosis, heart attacks and strokes. The disease is therefore regarded as a possible model system for the natural aging process in cells.
A window on the cell nucleus
In order to find out which specific metabolic pathways are affected by the mutation and the defective protein, Prof. Karima Djabali and her team from the TUM School of Medicine and the Institute for Medical Engineering conducted a comparative study of diseased and healthy tissue cells in which they investigated the composition of proteins in the cell nuclei and looked for differences.