Thursday, December 3, 2015

Orange pigment may have potential as anti-cancer drug



Caloplaca_Fenwick
An orange pigment found in lichens and rhubarb called parietin may have potential as an anti-cancer drug, scientists at Winship Cancer Institute of Emory University have discovered.

The results are scheduled for publication on October 19 in Nature Cell Biology.

Parietin, also known as physcion, could slow the growth of and kill human leukemia cells obtained directly from patients, without obvious toxicity to human blood cells, the authors report. The pigment could also inhibit the growth of human cancer cell lines derived from lung and head and neck tumors when grafted into mice.
A team of researchers led by Jing Chen, PhD, discovered the properties of parietin because they were looking for inhibitors for the metabolic enzyme 6PGD (6-phosphogluconate dehydrogenase). 6PGD is part of the pentose phosphate pathway, which supplies cellular building blocks for rapid growth. Researchers have already found 6PGD enzyme activity increased in several types of cancer cells.

"This is part of the Warburg effect, the distortion of cancer cells' metabolism," says Chen, professor of hematology and medical oncology at Emory University School of Medicine and Winship Cancer Institute. "We found that 6PGD is an important metabolic branch point in several types of cancer cells."

This work represents a collaboration among three laboratories at Winship led by Chen, Sumin Kang, PhD, assistant professor of hematology and medical oncology, and Jun Fan, PhD, assistant professor of radiation oncology. Co-first authors are postdoctoral fellows Ruiting Lin, PhD, and Changliang Shan, PhD, and former graduate student Shannon Elf, PhD, now at Harvard.

The Winship team obtained cancer cells from a patient with acute lymphoblastic leukemia, and found doses of physcion/parietin that could kill half the leukemia cells in culture within 48 hours, while the same doses left healthy blood cells unscathed. A more potent derivative of the pigment called S3 could cut the growth of a lung cancer cell line by a factor of three over 11 days, when the cells were implanted into mice.

Ref : http://www.emoryhealthsciblog.com/tag/jing-chen/

Ixazomib’s phase 3 study in relapsed/refractory multiple myeloma presented



Ixazomib.svg


Takeda Pharmaceutical Company Limited today announced that it will present Phase 3 data from the TOURMALINE-MM1 ixazomib clinical trial at the 57th American Society of Hematology (ASH) Annual Meeting to be held in Orlando, Florida from December 5 to 8, 2015.

A total of 19 company-sponsored abstracts representing the breadth and depth of Takeda’s hematology-oncology portfolio were accepted for presentation at this year’s meeting.

We are particularly looking forward to this year’s ASH annual meeting. We will be presenting pivotal data on the ixazomib program, as well as the five year overall survival data for ADCETRIS in relapsed/refractory Hodgkin lymphoma.

The success of these two programs, in addition to data we will be presenting on VELCADE and our pipeline, is the realization of decades of commitment to patients with hematological malignancies.

Dixie-Lee Esseltine, MD, FRCPC, Vice President, Oncology Therapeutic Area Unit, Takeda.
“This is the first time Phase 3 data will be presented for ixazomib, an oral, once-weekly proteasome inhibitor which, if approved, would enable the first all-oral triplet regimen containing a proteasome inhibitor for the treatment of relapsed/refractory multiple myeloma,” said TOURMALINE-MM1 Principal Investigator Philippe Moreau, M.D., University of Nantes, France.

“In working with Takeda Oncology on the evolution of proteasome inhibition, we continue to strive towards providing new options to address the unmet needs of patients with multiple myeloma.”

Ixazomib is the first oral proteasome inhibitor in late stage clinical development. The TOURMALINE-MM1 study is an international, randomized, double-blind, placebo-controlled Phase 3 clinical trial which was designed to evaluate the superiority of once-a-week oral ixazomib plus lenalidomide and dexamethasone vs. placebo plus lenalidomide and dexamethasone in adult patients with relapsed and/or refractory multiple myeloma.

Ixazomib has been granted Priority Review from the U.S. Food and Drug Administration (FDA) and Accelerated Assessment by the Committee for Medicinal Products for Human Use of the European Medicines Agency , respectively, validating the profound and continuing unmet need for new multiple myeloma treatments.

Wednesday, December 2, 2015

New study compares effectiveness of clozapine with standard antipsychotics in adults with schizophrenia

Skeletal formula of clozapine



In real-world settings, patients with schizophrenia whose symptoms do not respond to standard antipsychotic medications have better outcomes if they are switched to clozapine instead of another standard antipsychotic. They have fewer hospitalizations, stay on the new medication longer, and are less likely to need to use additional antipsychotics. These findings were published today in the American Journal of Psychiatry.

Schizophrenia is a serious mental disorder affecting up to one percent of the adult population. Antipsychotics are effective at relieving symptoms for most patients, but up to 30% do not respond well to standard treatments and are considered to have treatment-resistant schizophrenia. While trials have indicated that clozapine is effective for these cases, the effectiveness of clozapine in clinical practice has not previously been studied in depth.
Often when one traditional antipsychotic medication does not work, clinicians change to another traditional antipsychotic. Clozapine is often seen as a drug of last resort, although it is the only medication approved by the FDA for treatment-resistant schizophrenia.

The new study was conducted using national Medicaid data from 6,246 patients whose treatment patterns were consistent with treatment resistance. It is the largest study directly comparing the effectiveness of clozapine with standard antipsychotics in this population in routine practice settings.

The results are encouraging and timely because the FDA recently broadened access to clozapine. In the past access was limited, in part because of the risk of agranulocytosis, a condition that can make people susceptible to infections. A system has been in place for 25 years to successfully manage the risks of agranulocytosis, using regular monitoring of white blood cell levels. Leading clinicians thus believe the limits on use of clozapine have been overly restrictive. The new FDA rules still require regular blood monitoring, but allow prescribers to make decisions based on benefits and risks for individual patients rather than rigidly following universal standards.

Yoga exercise as effective as traditional pulmonary rehab in improving pulmonary function in COPD patients

Researchers from the Department of Pulmonary Medicine and Sleep Disorders and All India Institute of Medical Sciences, New Delhi, India, studied the effects of yoga as a form of pulmonary rehabilitation on markers of inflammation in the body. Results from this study showed yoga exercises provide improvements that are just as effective as traditional pulmonary rehabilitation methods in improving pulmonary function, exercise capacity, and indices of systemic inflammation.

Sixty patients with COPD were randomly divided into two groups, one of which was taught yoga exercises while the other underwent a structured pulmonary rehabilitation program. These groups were tested on shortness of breath, serum inflammation, and lung function tests. Each group participated in 1 hour of training twice a week for the first 4 weeks, then training every 2 weeks for 8 weeks, and the remaining weeks were at home. Results showed that yoga and pulmonary rehabilitation exercises resulted in similar improvements in pulmonary function, 6-minute walk distance, Borg scale, severity of dyspnea, quality of life, and levels of C-reactive protein after 12 weeks of training.

"This study suggests yoga may be a cost-effective form of rehabilitation that is more convenient for patients," said Mark J. Rosen, MD, Master FCCP, CHEST Medical Director. "The authors recommended adoption of yoga programs as an option as part of long-term management of COPD. These findings should be confirmed in new studies and the potential mechanisms explored."

Tuesday, December 1, 2015

BDSI announces FDA approval of BUNAVAIL sNDA for manufacturing specification change



https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEjevkEiQZzMMsBVoxKSUsKTZc-Y16dTZYBo8cTqxtxFsQAw7mpzJKxfvviz9JBIwg7AS5JElI7s6c00oWTcRGyp3PG1oMY6VlU02NWkFjQ21v2RaM4dzXhxGS6jizQV74QS1HSFgKea69I/s1600/


BioDelivery Sciences International, Inc. (NASDAQ: BDSI) announced that the U.S. Food and Drug Administration (FDA) has approved the company's Supplemental New Drug Application (sNDA) for a manufacturing specification change for BUNAVAIL® (buprenorphine and naloxone) buccal film (CIII).


The approval allows for the immediate release of BUNAVAIL inventory to wholesalers. BDSI will be shipping product to wholesalers this morning which should make product available in pharmacies as early as Friday.
The newly released product supplies are expected to satisfy current and anticipated demand, which has increased following the October 1 initiation of a contract providing exclusive, preferred formulary status for BUNAVAIL for Medicaid patients in the state of Tennessee.

"All of us at BDSI want to thank the Division of Anesthesia, Analgesia and Addiction Products at FDA for working with us in an expeditious and collaborative fashion to help allow patients benefiting from BUNAVAIL treatment to maintain uninterrupted availability," said Dr. Mark A. Sirgo, President and Chief Executive Officer. "We also want to thank all of the patients, physicians and other health providers, including pharmacists, for their patience and support during this period of inconvenience."

Monday, November 30, 2015

Medical experts launch crowd funding project to investigate effect of malaria drug on colorectal cancer


Artesunate.svg


In continuation of my update on Artesunate


Medical experts investigating whether a common malaria drug could have a significant impact on colorectal cancer have launched a crowd funding project to fund their work.

Scientists at St George's, University of London, and St George's Hospital, are in the second phase of research into whether the malaria drug artesunate, can have a positive effect on colorectal cancer patients by reducing the multiplication of tumour cells and decreasing the risk of cancer spreading or recurring after surgery. If it does the drug could be used to provide a cheap adjunct to current expensive chemotherapy.

Artesunate is derived from the plant Artemisia Annua also known as Sweet Wormwood. The Chinese scientist Tu Youyou whose research in the 1960s led to the development of artesunate from a plant used in Chinese traditional medicine, was recently awarded the Nobel Prize 2015.


Over one million patients are diagnosed with colorectal cancer globally each year. Colorectal cancer is the third most common cancer in men and the second most common cancer in women and is a leading cause of mortality. In the UK,110 new cases are diagnosed daily, with older patients particularly at risk of death (Ferlay et al 2014). Current treatments involve complex combinations of surgery, chemotherapy and radiotherapy.

Unfortunately all these measures have not increased overall survival rates beyond 60% at the 5 year stage after patients receive a diagnosis. New treatments are urgently needed to improve survival rates. Developing new, effective drugs however can take many years and sometimes even decades. Repurposing safe and established existing drugs for cancer treatment is therefore gaining interest amongst the scientific community.

Friday, November 27, 2015

Research: Epigenetic factor reduces sensitivity of breast cancer cells to common cancer drug


Lapatinib2DACS.svg

In continuation of my update on lapatinib


A surprising, paradoxical relationship between a tumor suppressor molecule and an oncogene may be the key to explaining and working around how breast cancer tumor cells become desensitized to a common cancer drug, found researchers at the Perelman School of Medicine at the University of Pennsylvania. The drug, lapatinib, activates the suppressor called FOXO, in HER2+ breast cancer cells, but then FOXO becomes a turncoat molecule, working with an epigenetic regulator that controls gene expression. This drug-triggered relationship induces the expression of the oncogene c-Myc, leading to reduced sensitivity to the cancer drug and eventually relapse. They published their cover article today in Cancer Cell.

"We found that an epigenetic pathway is crucial for growth of HER2+ cells and this epigenetic factor reduces sensitivity of the cancer cells to lapatinib, a HER2 inhibitor," said senior author Xianxin Hua, MD, PhD, a professor of Cancer Biology. "We need to understand how the body initially responds to these drugs and why there is a relapse and devise a new tool to fix that."
Human epidermal growth factor receptor 2 (HER2) is upregulated in a subset of human breast cancers. The HER2 pathway is mutated in many cancers, which drives tumors, but inhibitors of this pathway, such as lapatinib, have only limited success because cancer cells quickly adapt.

FOXO was normally thought of as the "good guy" molecule that controls cancerous cell growth, while c-Myc, the cancer-promoting molecule, the "bad guy." However, FOXO becomes the agent that desensitizes cells to cancer drugs, so this "good guy" molecule is converted to a "bad guy," during the treatment of the cancer cells with the anti-cancer drug.

"Now that we know about this triangle among FOXO, c-Myc, and the epigenetic pathway, we can stop c-Myc with an epigenetic inhibitor," Hua said. "Multiple epigenetic regulators participate in the drug-desensitizing pathway, so they could serve as new targets to improve therapy for this type of cancer."

Thursday, November 26, 2015

Investigational antiviral drug effectively treats Lassa virus infection in guinea pigs

Favipiravir.svg


We know that, Favipiravir, also known as T-705 or Avigan, is an experimental antiviral drug being developed by Toyama Chemical of Japan with activity against many RNA viruses. Like some other experimental antiviral drugs (T-1105 and T-1106), it is a pyrazinecarboxamide derivative. Favipiravir is active against influenza viruses, West Nile virus, yellow fever virus, foot-and-mouth disease virus as well as other flaviviruses, arenaviruses, bunyaviruses and alphaviruses.[1Activity against enteroviruses and Rift Valley fever virus has also been demonstrated.

The mechanism of its actions is thought to be related to the selective inhibition of viral RNA-dependent RNA polymerase.[4] Favipiravir does not inhibit RNA or DNA synthesis in mammalian cells and is not toxic to them.[1]

In 2014, favipiravir was approved in Japan for stockpiling against influenza pandemics
Favipiravir, an investigational antiviral drug currently being tested in West Africa as a treatment for Ebola virus disease, effectively treated Lassa virus infection in guinea pigs, according to a new study from National Institutes of Health (NIH) scientists and colleagues. Lassa fever is endemic to West Africa and affects about 300,000 people annually, killing roughly 5,000. In some parts of Sierra Leone and Liberia, it is believed nearly 15 percent of people admitted to hospitals have Lassa fever, according to the Centers for Disease Control and Prevention. No vaccine or licensed treatment exists for Lassa fever, although ribavirin, licensed for hepatitis C treatment, has been used with limited success. In the new study, published Oct. 12, 2015, in Scientific Reports, favipiravir not only effectively treated guinea pigs infected with Lassa virus, it also worked better than ribavirin.

Two days after infecting groups of guinea pigs with a lethal dose of Lassa virus, the scientists treated the rodents daily for two weeks with either ribavirin, low doses of favipiravir, or high doses of favipiravir. They also evaluated the effect of high-dose favipiravir in the rodents that began treatment five, seven or nine days after infection. All of the animals that received high-dose favipiravir were completely protected from lethal infection; animals treated seven or nine days after infection had begun showing signs of disease, but their conditions quickly improved when treatment began. Those animals in the low-dose favipiravir group showed mild to moderate signs of disease, but those symptoms resolved after about one week of treatment. The animals treated with ribavirin appeared normal during the treatment phase but developed severe disease shortly after treatment ended.


Wednesday, November 25, 2015

CU Cancer Center study reports 'robust antitumor activity' of TAK-733 drug in mouse models of colorectal cancer


In continuation of my update on TAK-733
http://pubchem.ncbi.nlm.nih.gov/image/


A University of Colorado Cancer Center study recently published online ahead of print in the journal Oncotarget reports "robust antitumor activity" of the drug TAK-733 in cells and mouse models of colorectal cancer. In all, 42 of 54 tested cell lines were sensitive to the drug, as were 15 of 20 tumors grown on mice from patient samples. Nine of these patient-derived tumors showed regression, meaning that tumor tumors shrank in response to the drug.

"This was a large preclinical study that showed good activity for the drug and gave preliminary evidence for a potential biomarker that could predict which tumors would respond best to the drug," says Christopher Lieu, MD, investigator at the CU Cancer Center and assistant professor of medical oncology at the University of Colorado School of Medicine.

Specifically, the drug intercedes in the MAPK signaling pathway, a cascade of cellular communication that controls cell growth and survival and is frequently altered in many cancers (especially including melanoma, non-small cell lung cancer, and colorectal cancer). The drug does this by silencing an essential link in this signaling chain, namely the molecule MEK. Without activity of the MEK kinase, MAPK signaling cannot occur and instead of surviving and proliferating, cancer cells dependent on this pathway die.

A handful of successful MEK kinase inhibitors exist, including trametinib and selumetinib.

"The preclinical results for TAK-733 were fairly impressive. We had high hopes that TAK-733 could be a next-generation MEK inhibitor that might support or replace the use of current drugs," Lieu says.

The study seemed a perfect precursor to a human clinical trial of TAK-733 in colorectal cancer.


Tuesday, November 24, 2015

Sense oligonucleotide antidote reverses actions of antisense antithrombotic drug, prevents bleeding


Researchers from Isis Pharmaceuticals (Carlsbad, CA) and Prysis Biotechnologies (Pudong, Shanghai, China) have demonstrated proof-of-concept for using a sense oligonucleotide to undo the effects of an antisense drug, an antithrombotic agent in this novel study. The sense oligonucleotide antidote reversed the actions of the antisense antithrombotic drug in the mouse model and prevented the bleeding that commonly occurs with anti-coagulation therapy, as described in an article in Nucleic Acid Therapeutics, a peer-reviewed journal from Mary Ann Liebert, Inc. publishers. The article is available free on the Nucleic Acid Therapeutics website until November 13, 2015.

Jeff Crosby, Chenguang Zhao, Hong Zhang, A. Robert MacLeod, Shuling Guo, and Brett Monia treated mice with an antisense oligonucleotide drug designed to suppress the ability of liver and blood cells to produce prothrombin, a protein required for blood to coagulate. Subsequent treatment with a prothrombin sense oligonucleotide antidote led to a dose-dependent reversal of the antisense drug activity and the return of prothrombin to normal levels. The authors describe the study design and the implications of their findings in the article "Reversing Antisense Oligonucleotide Activity with a Sense Oligonucleotide Antidote: Proof of Concept Targeting Prothrombin."

"An elegant demonstration of the feasibility of reversing the effects of an antisense oligonucleotide in vivo by administering an antidote oligonucleotide," says Executive Editor Graham C. Parker, PhD, The Carman and Ann Adams Department of Pediatrics, Wayne State University School of Medicine, Children's Hospital of Michigan, Detroit, MI. "It will be fascinating to now see how the chemistry can be optimized to achieve translation to clinical efficacy."





Sense oligonucleotide antidote reverses actions of antisense antithrombotic drug, prevents bleeding

Monday, November 23, 2015

Tamoxifen drug clears MRSA, reduces mortality


In continuation of my update on Tamoxifen
Tamoxifen2DACS.svg


Researchers at University of California, San Diego School of Medicine and Skaggs School of Pharmacy and Pharmaceutical Sciences have found that the breast cancer drug tamoxifen gives white blood cells a boost, better enabling them to respond to, ensnare and kill bacteria in laboratory experiments. Tamoxifen treatment in mice also enhances clearance of the antibiotic-resistant bacterial pathogen MRSA and reduces mortality.

The study is published October 13 by Nature Communications.

"The threat of multidrug-resistant bacterial pathogens is growing, yet the pipeline of new antibiotics is drying up. We need to open the medicine cabinet and take a closer look at the potential infection-fighting properties of other drugs that we already know are safe for patients," said senior author Victor Nizet, MD, professor of pediatrics and pharmacy. "Through this approach, we discovered that tamoxifen has pharmacological properties that could aid the immune system in cases where a patient is immunocompromised or where traditional antibiotics have otherwise failed."

Tamoxifen targets the estrogen receptor, making it particularly effective against breast cancers that display the molecule abundantly. But some evidence suggests that tamoxifen has other cellular effects that contribute to its effectiveness, too. For example, tamoxifen influences the way cells produce fatty molecules, known as sphingolipids, independent of the estrogen receptor. Sphingolipids, and especially one in particular, ceramide, play a role in regulating the activities of white blood cells known as neutrophils.

"Tamoxifen's effect on ceramides led us to wonder if, when it is administered in patients, the drug would also affect neutrophil behavior," said first author Ross Corriden, PhD, project scientist in the UC San Diego School of Medicine Department of Pharmacology.

To test their theory, the researchers incubated human neutrophils with tamoxifen. Compared to untreated neutrophils, they found that tamoxifen-treated neutrophils were better at moving toward and phagocytosing, or engulfing, bacteria. Tamoxifen-treated neutrophils also produced approximately three-fold more neutrophil extracellular traps (NETs), a mesh of DNA, antimicrobial peptides, enzymes and other proteins that neutrophils spew out to ensnare and kill pathogens. Treating neutrophils with other molecules that target the estrogen receptor had no effect, suggesting that tamoxifen enhances NET production in a way unrelated to the estrogen receptor. Further studies linked the tamoxifen effect to its ability to influence neutrophil ceramide levels.

Ref : http://www.nature.com/ncomms/2015/151013/ncomms9369/full/ncomms9369.html

Friday, November 20, 2015

FDA approves Endo’s BELBUCA (buprenorphine) buccal film for use in patients with chronic pain

New treatment option combines proven efficacy and established safety profile of buprenorphine with a novel delivery system that adds convenience and flexibility.

http://upload.wikimedia.org/wikipedia/commons/0/04/

Endo Pharmaceuticals Inc., a subsidiary of Endo International plc (NASDAQ: ENDP) (TSX: ENL), and BioDelivery Sciences International, Inc. (NASDAQ: BDSI), announced today that the U.S. Food and Drug Administration (FDA) has approved BELBUCA™ (buprenorphine) buccal film for use in patients with chronic pain severe enough to require daily, around-the-clock, long-term opioid treatment and for which alternative treatment options are inadequate.  BELBUCA™, which is the first and only buprenorphine developed with a dissolving film that is absorbed through the inner lining of the cheek for chronic pain management, is expected to be commercially available in the U.S. during the first quarter of 2016 in seven dosage strengths, allowing for flexible dosing ranging from 75 μg to 900 μg every 12 hours. This enables physicians to individualize titration and treatment based on the optimally effective and tolerable dose for each patient.

“The availability of new, convenient and flexible treatment options is important for patients whose lives are burdened by chronic pain, a debilitating condition that affects more Americans than diabetes, heart disease and cancer combined,” said Richard L. Rauck, M.D., Director of Carolinas Pain Institute, Winston Salem, NC. “BELBUCA™ provides a unique approach for chronic pain management, combining the proven efficacy and established safety of buprenorphine with a novel buccal film delivery system that adds convenience and flexibility. For both opioid-naïve and opioid-experienced patients who require around-the-clock treatment and for whom alternative treatment options are inadequate, BELBUCA™ offers appropriate, consistent pain relief and a low incidence of typical opioid-like side effects.”

BELBUCA™ is a mu-opioid receptor partial agonist and a potent analgesic with a long duration of action that utilizes BDSI’s patented BioErodible MucoAdhesive (BEMA®) drug delivery technology. Through this unique delivery system, buprenorphine is efficiently and conveniently delivered across the buccal mucosa (inside lining of the cheek). Buprenorphine is a Schedule III controlled substance, meaning that it has been defined as having lower abuse potential than Schedule II drugs, a category that includes most opioid analgesics. Among chronic pain patients taking opioids, the vast majority are on daily doses of 160 mg of oral morphine sulfate equivalent (MSE) or less. With seven dosage strengths up to 160 mg MSE, BELBUCA™ offers a treatment choice for a wide range of opioid needs in chronic pain sufferers.


Last resort antibiotics may no longer work

Last resort antibiotics may no longer work

Antiviral agent protects rhesus monkeys from deadly Ebola virus

Rhesus monkeys were completely protected from the deadly Ebola virus when treated three days after infection with a compound that blocks the virus's ability to replicate. These encouraging preclinical results suggest the compound, known as GS-5734, should be further developed as a potential treatment, according to research findings to be presented tomorrow at the IDWeek conference.

Travis Warren, Ph.D., a principal investigator at the U.S. Army Medical Research Institute of Infectious Diseases (USAMRIID), said the work is a result of the continuing collaboration between USAMRIID and Gilead Sciences of Foster City, Calif. Scientists at the Centers for Disease Control and Prevention (CDC) also contributed by performing initial screening of the Gilead Sciences compound library to find molecules with promising antiviral activity.

The initial work identified the precursor to GS-5734, a small-molecule antiviral agent, which led to the effort by Gilead and USAMRIID to further refine, develop and evaluate the compound. Led by USAMRIID Science Director Sina Bavari, Ph.D., the research team used cell culture and animal models to assess the compound's efficacy against several pathogens, including Ebola virus.

In animal studies, treatment initiated on day 3 post-infection with Ebola virus resulted in 100 percent survival of the monkeys. They also exhibited a substantial reduction in viral load and a marked decrease in the physical signs of disease, including internal bleeding and tissue damage.

"The compound, which is a novel nucleotide analog prodrug, works by blocking the viral RNA replication process," said Warren. "If the virus can't make copies of itself, the body's immune system has time to take over and fight off the infection."

In cell culture studies, GS-5734 was active against a broad spectrum of viral pathogens. These included Lassa virus, Middle East Respiratory Syndrome (MERS) virus, Marburg virus, and multiple variants of Ebola virus, including the Makona strain causing the most recent outbreak in West Africa.

Ref : https://idsa.confex.com/idsa/2015/webprogram/Paper54208.html

Thursday, November 19, 2015

YK-4-279 compound works against some forms of leukemia: Study

A compound discovered and developed by a team of Georgetown Lombardi Comprehensive Cancer Center researchers that halts cancer in animals with Ewing sarcoma and prostate cancer appears to work against some forms of leukemia, too. That finding and the team's latest work was published online Oct. 8 in Oncotarget. 

YK-4-279 Chemical Structure

The compound is YK-4-279, the first drug targeted at similar chromosomal translocations found in Ewing sarcoma, prostate cancer and in some forms of leukemia. Translocations occur when two normal genes break off from a chromosome and fuse together in a new location. This fusion produces new genes that manufacture proteins, which then push cancer cells to become more aggressive and spread. One of those proteins is EWS-FLI1. YK-4-279 appears effective in controlling the cancer promoting functions of EWS-FLI1.

"EWS-FLI1 is already known to drive a rare but deadly bone cancer called Ewing sarcoma, which occurs predominantly in children, teens and young adults," says Aykut Ãœren, MD, professor of molecular oncology at Georgetown Lombardi. "It also appears to drive cancer cell growth in some prostate cancers."
In this new study led by Ãœren, mice with EWS-FLI1-driven leukemia were given injections of YK-4-279 five days per week for two weeks and compared with untreated mice. By the end of the first week the mice receiving YK-4-279 had much lower numbers of leukemia cells. At the end of two weeks the treated mice were nearly normal by many measures, while the untreated mice had overwhelming numbers of cancer cells and died on average after three weeks, the researchers say. By contrast, mice receiving only two weeks of YK-4-279 lived nearly three times as long.

"The fact that treated mice did not get sick from the YK-4-279 gives us an early indication that it might be safe to use in humans, but that is a question that can't be answered until we conduct clinical trials," Ãœren explains. "We are looking for ways that would allow us to administer more of it, or even to formulate a pill."

Ãœren says much more work remains for the team in order to translate this drug from a laboratory application into clinical trials.

Support for this work came from the Children's Cancer Foundation, St. Baldrick's Foundation, Go4theGoal, the Burroughs Wellcome Fund Clinical Scientist Award in Translational Research, the Austrian Science Fund (FWF), the Children´s Cancer Research Institute and from grants from the National Institutes of Health (RC4CA156509, R01CA133662, R01CA138212).