Monday, June 6, 2016

Melatonin appears to suppress growth of breast cancer stem cells

In continuation of my update on Melatonin

Melatonin, a hormone produced in the human brain, appears to suppress the growth of breast cancer tumors.

Researchers at Michigan State University published this finding in the current issue ofGenes and Cancer. While treatments based on this key discovery are still years away, the results give scientists a key foundation on which to build future research.

Melatonin.svg

"You can watch bears in the zoo, but you only understand bear behavior by seeing them in the wild," said David Arnosti, MSU biochemistry professor, director of MSU's Gene Expression in Development and Disease Initiative and co-author of the study. "Similarly, understanding the expression of genes in their natural environment reveals how they interact in disease settings. That's what is so special about this work."

The brain manufactures melatonin only at night to regulate sleep cycles. Epidemiologists and experimentalists have speculated that the lack of melatonin, due in part to our sleep-deprived modern society, put women at higher risk for breast cancer. The latest MSU study showed that melatonin suppresses the growth of breast cancer stem cells, providing scientific proof to support the growing body of anecdotal evidence on sleep deprivation.

The research team was led by Juliana Lopes, a visiting researcher from Sao Paolo, Brazil. Before the team could test its theory, the scientists had to grow tumors from stem cells, known as "mammospheres," a method perfected in the laboratory of James Trosko at MSU.

The growth of these mammospheres was enhanced with chemicals known to fuel tumor growth, namely, the natural hormone estrogen, and estrogen-like chemical Bisphenol A, or BPA, found in many types of plastic food packages.

Melatonin treatment significantly decreased the number and size of mammospheres when compared with the control group. Furthermore, when the cells were stimulated by estrogen or BPA and treated with melatonin at the same time, there was a greater reduction in the number and size of mammospheres.

"This work establishes the principal by which cancer stem cell growth may be regulated by natural hormones, and provides an important new technique to screen chemicals for cancer-promoting effects, as well as identify potential new drugs for use in the clinic," Trosko said.

Friday, June 3, 2016

Mycophenolate mofetil drug seems safe, effective in treating autoimmune hepatitis

Mycophenolicacid.svg



New research indicates that mycophenolate mofetil, a drug that is usually used to prevent rejection after kidney, heart or liver transplant, seems safe and effective in treating autoimmune hepatitis (AIH), a serious chronic liver disease that mainly affects women. 

Treatment for AIH is usually based on steroids, which can have very serious side effects when taken long term either alone or in combination with the immunosuppressive drug azathioprine. In this latest real-world study, nearly 94% of patients had an initial complete response to mycophenolate mofetil mostly within 3 months of treatment. A total of 78 of 109 patients (72%) had a complete response on-treatment, and 61 of 78 (78%) maintained remission off steroids. Most importantly, mycophenolate mofetil as front-line treatment for AIH not only accomplished high rates of on-treatment response, but also showed the highest rates of maintenance of complete remission after complete drug withdrawal (75% of patients) ever published, for a median of 2 years.

"As relapse after drug withdrawal in AIH patients is almost universal with conventional therapy, mycophenolate mofetil seems a reasonable, safe, and important alternative first-line treatment of AIH that should seriously and urgently be considered in the future," said Dr. George Dalekos, senior author of the Alimentary Pharmacology & Therapeutics study.

Mycophenolate mofetil drug seems safe, effective in treating autoimmune hepatitis: New research indicates that mycophenolate mofetil, a drug that is usually used to prevent rejection after kidney, heart or liver transplant, seems safe and effective in treating autoimmune hepatitis (AIH), a serious chronic liver disease that mainly affects women.

Experimental drug may become key tool to target triple-negative breast cancer with immunotherapy

An external file that holds a picture, illustration, etc.
Object name is oncotarget-07-15757-g001.jpg

Previous studies at the University of Colorado Cancer Center show that the experimental drug AMPI-109 potently kills triple-negative breast cancer cells. But even the most compelling evidence of cell death in a dish isn't enough to push a drug into human clinical trials, even for triple-negative breast cancer, which has a high mortality rate and remains largely without targeted treatment options. Clinical trials are commonly guided by the knowledge of how a drug works - an understanding that can allow researchers to tweak a drug's effectiveness or explore rational combinations of multiple drugs to maximize antitumor responses. Now a study published in the journal Oncogenesis offers compelling evidence that AMPI-109 works by flipping the switch on an enzyme called PRL-3 that initially puts cancer cells to "sleep" or senescence, and shortly thereafter leads to their death, or apoptosis.

"For decades, we've known about a paradoxical signaling pathway called TNF-R1 whose activation can either help a cell survive or lead to cell death. However, the signals that lead to this pathway promoting survival or promoting death have been poorly understood, especially in the context of cancer cells. We have observed that one regulator of this process in triple-negative breast cancer cells may be the activity of PRL-3. With this gene active, cells survive. With PRL-3 inactivated, cells senesce and eventually die," says Hamid Gari, PhD, who studied the mechanism of PRL-3 while working as a doctoral candidate in the lab of CU Cancer Center investigator James R. Lambert, PhD. Gari is first author and Lambert is senior author of the current study which was performed in collaboration with Scott Lucia, MD in the department of Pathology.

Gari explains that PRL-3 sets in motion a set of genes that recruits elements of the immune system to boost cancer growth during good times and allows cancer cells to sleep through bad times, for example those caused by anti-cancer therapies.

"Hamid's studies knocked down the gene PRL-3 in triple-negative breast cancer cells using genetic techniques, but the drug does something analogous by blocking PRL-3 function. Our studies suggest AMPI-109 reprograms the cell to enter senescence but then they keep going past this state and into apoptosis," Lambert says.

The finding comes at a time when cancer immunotherapies are becoming first-line treatments for many forms of the disease. Basically, the strategy is to teach the immune system to recognize and attack tumor tissue. However, some cancers may be particularly good at "hiding" from the immune system, allowing them to subsist and thrive in challenging tumor tissue conditions. For this reason, many immunotherapies result in holding cancer at bay rather than wiping it out completely. In fact, some immunotherapies treat cancer as a chronic condition, with therapy continuing indefinitely with the goal of simply keeping cancer in check.

"Our studies propose that by inhibiting PRL-3 activity, such as with AMPI-109, it may serve as a 'flag' to signal the immune system where the tumor is, and in essence could sensitize tumors to immunotherapy. The result is a two-hit strategy to expose the tumor and then allow the immune system combat it," Gari says.

Ref : http://www.ncbi.nlm.nih.gov/pubmed/26909599?dopt=Abstract&holding=npg
Ref : http://www.nature.com/oncsis/journal/v5/n8/full/oncsis201650a.html#bib6


Thursday, June 2, 2016

Xalkori Approved For Rare Genetic Form of Lung Cancer

In continuation of my update on Xalkori (crizotinib)

Crizotinib.svg

Xalkori (crizotinib) has been approved by the U.S. Food and Drug Administration to treat advanced non-small cell lung cancer (NSCLC) with tumors that have a rare ROS-1 gene mutation.The drug was approved in 2011 to treat advanced NSCLC that was related to an abnormal ALK gene, the agency said Friday in a news release.

Lung cancer is the leading cause of cancer death in the United States. Last year, more than 221,000 cases were diagnosed and more than 158,000 people died from it, the FDA said.
Clinical studies of 50 people with ROS-1-positive NSCLC found that about two-thirds of participants treated with Xalkori had their tumors partially or completely shrink for an average of 18 months, the agency said.
The drug's most common side effects include nausea, diarrhea, vomiting, swelling, constipation, elevated liver enzymes, fatigue, loss of appetite and upper respiratory infection. More serious adverse reactions could include liver problems, lung inflammation, abnormal heartbeat and loss of vision.

Teva Receives Complete Response Letter for NDA for SD-809 for the Treatment of Chorea Associated with Huntington Disease

Teva Pharmaceutical Industries Ltd.  announced that it has received a Complete Response Letter (CRL) from the U.S. Food and Drug Administration (FDA) regarding the New Drug Application (NDA) for SD-809 (deutetrabenazine) tablets for the treatment of chorea associated Huntington disease (HD). This is the first deuterated product to be reviewed by the FDA. The FDA has asked Teva to examine blood levels of certain metabolites. These metabolites are not novel, and are the same seen in subjects who take tetrabenazine or deutetrabenazine. No new clinical trials have been requested.
Dutetrabenazine.png
“Teva will continue to work closely with the FDA to bring SD-809 to the market as quickly as possible,” said Michael Hayden, M.D., Ph.D., President of Global R&D and Chief Scientific Officer at Teva. “We know that many people in the HD community are waiting for this new medicine. We understand there are very limited treatment options for HD patients and their families, hence we are accelerating the re-analysis process we were asked to conduct. We plan to submit our response to the CRL in Q3 2016."
HD is a rare and fatal neurodegenerative disorder caused by the death of nerve cells in the brain that affects about one in 7,000 – 10,000 people in western countries. Chorea—abnormal, involuntary writhing movements—is one of the most striking physical manifestations of this disease and it occurs in approximately 90% of patients at some point in the course of their illness.
In addition to HD, Teva’s programs for the development of SD-809 for the treatment of patients with tardive dyskinesia (TD) and Tourette syndrome (TS) are ongoing. Teva is currently conducting a Phase III efficacy and safety study in patients with moderate to severe TD known as AIM-TD (Addressing Involuntary Movements in Tardive Dyskinesia) and expects additional data from this study later in 2016, with regulatory submission to follow as planned. SD-809 has also been granted orphan drug designation for the treatment of TS in the pediatric population (defined as up to 16 years of age) and is planning further evaluation of SD-809 as a treatment for tics associated with TS.

About SD-809 (deutetrabenazine) Tablets

SD-809 (deutetrabenazine) is an investigational, oral, small-molecule inhibitor of vesicular monoamine 2 transporter, or VMAT2, that is being developed for the treatment of chorea associated with Huntington disease (HD). Deutetrabenazine has been granted Orphan Drug Designation for the treatment of HD by the U.S. Food and Drug Administration (FDA). Teva is also investigating the potential of deutetrabenazine for treating tardive dyskinesia, for which the FDA has granted a breakthrough therapy designation, and for tics associated with Tourette syndrome, for which the FDA has granted orphan status for pediatric use. Deutetrabenazine uses Teva’s deuterium technology.

Wednesday, June 1, 2016

FDA Grants Spectrum Pharmaceuticals Approval of Evomela (melphalan) for Injection

Spectrum Pharmaceuticals,  a biotechnology company with fully integrated commercial and drug development operations with a primary focus in Hematology and Oncology, announced today that the U.S. Food and Drug Administration (FDA) has granted approval of Evomela for use in two indications: 1) use as a high-dose conditioning treatment prior to hematopoietic progenitor (stem) cell transplantation (ASCT) in patients with multiple myeloma (MM), and 2) for the palliative treatment of patients with MM for whom oral therapy is not appropriate. This is the first product to be FDA-approved for the high-dose conditioning indication in MM.
 Melphalan.svg


Tuesday, May 31, 2016

Organic chemists succeed in synthesizing 3,6-Dihydro-2H-pyran derivatives with high enantiomeric purity

The pyran ring is present in so many useful compounds, such as pharmaceuticals (antibiotics, anti-infectives, cardiovascular agents, neurological modulators, anti-allergic, anti-asthmatic, anti-inflammatory agents, reproductive and genitourinary agents, growth promoters and antidiabetic agents), veterinary products, agrochemicals, toxins, polymers and additives, photosensitizers and photoinitiators, surfactants, food products, dyes and pigments. This fact keeps motivating synthetic organic chemists to develop newer facile synthetic methods to make these compounds accessible in high enantiomeric purity. Bansal and co-workers have recently succeeded in obtaining a series of phenyl substituted 3,6-Dihydro-2H-pyran derivatives in 68 to 95% enantiomeric excess.

This report has two important features. It illustrates that differently substituted 2-phenyl-3,6-dihydro-2H-pyrans can be obtained in high yield with high enantiomeric purity involving relatively simple experimental method. Secondly, the enantiomeric excess has been rationalized on the basis of computational calculations at the DFT level. It is hoped that the results would be useful for further research in this field.

Monday, May 30, 2016

Allergan Announces FDA Approval of Aczone (dapsone) Gel, 7.5% for Treatment of Acne Vulgaris

Allergan plc, a leading global pharmaceutical company, today announced that the Company has received approval from the U.S. Food and Drug Administration (FDA) to market Aczone (dapsone) Gel, 7.5%, a new prescription topical treatment for acne in patients 12 years of age and older. Aczone Gel, 7.5% delivers proven efficacy to treat both inflammatory and non-inflammatory acne, with a new concentration of dapsone in just once-a-day application.

Dapsone.svg  (Dapsone)

"For the Aczone Gel, 7.5% pivotal trials, we studied 4,340 acne patients, demonstrating efficacy and tolerability. The new FDA product approval also offers just once-daily dosing and a new pump delivery system," said David Nicholson, Executive Vice President and President of Global R&D Brands at Allergan. "As part of Allergan's commitment to the medical dermatology space, we have truly raised the bar for ourselves in efforts to offer an effective acne product to address physician and patient needs."
In clinical trials of Aczone Gel, 7.5%, safety and efficacy were assessed in two identically designed, randomized, multi-centered, double-blind, vehicle-controlled 12-week studies. A total of 4,340 acne patients were randomized to receive either Aczone Gel, 7.5% (n=2162) or vehicle (n=2178). The majority of patients (99%; n=4339) had moderate acne, with a baseline score of 3 on the Global Acne Assessment Score (GAAS). Aczone Gel, 7.5% was approved based on co-primary endpoints of the GAAS and lesion counts (20 to 50 inflammatory and 30 to 100 non-inflammatory lesions at baseline). At week 12, inflammatory lesions were reduced by 15.8 lesions (54.6%; n=2162) vs 13.9 lesions with vehicle (48.1%; n=2178), and non-inflammatory lesions were reduced by 20.7 lesions (45.1%) vs 18.0 lesions with vehicle (39.4%).2 The GAAS success rate in patients was 29.8% (n=2162) vs 21.1% with vehicle (n=2178).
In addition to efficacy, Aczone Gel, 7.5% has a proven tolerability profile. Out of 2161 patients who used Aczone Gel, 7.5%, 1.1% experienced mild application-site dryness vs 1.0% with vehicle (n=2175), and 0.9% experienced pruritus vs 0.5% with vehicle.

Friday, May 27, 2016

Pfizer Receives Expanded FDA Approval For Ibrance (palbociclib) In HR , HER2- Metastatic Breast Cancer

Palbociclib.svg Palbociclib (codenamed PD-0332991, trade name Ibrance)



Pfizer Inc.,  announced that the U.S. Food and Drug Administration (FDA) has approved a new indication expanding the use of Ibrance (palbociclib) 125mg capsules, Pfizer’s metastatic breast cancer therapy. Now Ibrance also is approved for the treatment of hormone receptor-positive (HR+), human epidermal growth factor receptor 2-negative (HER2-) advanced or metastatic breast cancer in combination with fulvestrant in women with disease progression following endocrine therapy.1 Pfizer’s supplemental New Drug Application (sNDA) for Ibrance was reviewed and approved under the FDA’s Breakthrough Therapy designation and Priority Review programs based on results from the Phase 3 PALOMA-3 trial in pre-, peri- and post-menopausal women with HR+, HER2- metastatic breast cancer whose disease progressed on or after prior endocrine therapy in the adjuvant or metastatic setting.
Ibrance first was approved in February 2015 and also is indicated for the treatment of HR+, HER2- advanced or metastatic breast cancer in combination with letrozole as initial endocrine-based therapy in postmenopausal women.1 The indication in combination with letrozole is approved under accelerated approval based on progression-free survival (PFS). Continued approval for this indication may be contingent upon verification and description of clinical benefit in a confirmatory trial.1 The confirmatory Phase 3 trial, PALOMA-2, is fully enrolled.
Ibrance is the first and only cyclin-dependent kinase 4/6 (CDK 4/6) inhibitor approved by the FDA.

Thursday, May 26, 2016

FDA Approves Odefsey (emtricitabine, rilpivirine and tenofovir alafenamide) for the Treatment of HIV-1 Infection

Gilead Sciences, Inc announced that the U.S. Food and Drug Administration (FDA) has approved Odefsey (emtricitabine 200 mg/rilpivirine 25 mg/tenofovir alafenamide 25 mg or R/F/TAF) for the treatment of HIV-1 infection in certain patients. Emtricitabine and tenofovir alafenamide are from Gilead Sciences and rilpivirine is from Janssen Sciences Ireland UC, one of the Janssen Pharmaceutical Companies of Johnson & Johnson (Janssen). Odefsey is Gilead’s second TAF-based regimen to receive FDA approval and represents the smallest pill of any single tablet regimen for the treatment of HIV.

Emtricitabine skeletal.svgEmtricitabine  Rilpivirine.svgRilpivirine  Tenofovir alafenamide structure.svgTenofovir alafenamide

Odefsey is indicated as a complete regimen for the treatment of HIV-1 infection in patients 12 years of age and older who have no antiretroviral treatment history and HIV-1 RNA levels less than or equal to 100,000 copies per mL. Odefsey is also indicated as replacement for a stable antiretroviral regimen in those who are virologically-suppressed (HIV-1 RNA less than 50 copies per mL) for at least six months with no history of treatment failure and no known substitutions associated with resistance to the individual components of Odefsey. No dosage adjustment of Odefsey is required in patients with estimated creatinine clearance greater than or equal to 30 mL per minute.
Odefsey has a boxed warning in its product label regarding the risks of lactic acidosis/severe hepatomegaly with steatosis, and post treatment acute exacerbation of hepatitis B.
TAF is a novel targeted prodrug of tenofovir that has demonstrated high antiviral efficacy similar to and at a dose less than one-tenth that of Gilead’s Viread (tenofovir disoproxil fumarate, TDF). TAF has also demonstrated improvement in surrogate laboratory markers of renal and bone safety as compared to TDF in clinical trials in combination with other antiretroviral agents. Data show that because TAF enters cells, including HIV-infected cells, more efficiently than TDF, it can be given at a much lower dose and there is 90 percent less tenofovir in the bloodstream.

Tuesday, May 24, 2016

FDA Approves Imbruvica (ibrutinib) for the First-Line Treatment of Chronic Lymphocytic Leukemia

In continuation of my update on Ibrutinib 

Ibrutinib.svg

AbbVie (NYSE: ABBV), a global biopharmaceutical company, today announced the U.S. Food and Drug Administration (FDA) approved Imbruvica (ibrutinib) as a first-line treatment for patients with chronic lymphocytic leukemia (CLL).1 The approval is based on data from the randomized, multi-center, open-label Phase 3 RESONATE™-2 (PCYC-1115) trial, which evaluated the use of Imbruvica versus chlorambucil in 269 treatment-naïve patients with CLL or small lymphocytic lymphoma (SLL) aged 65 years or older. The RESONATE-2 data were previously presented at the American Society of Hematology (ASH) Annual Meeting in December 2015 and also simultaneously published in The New England Journal of Medicine. Imbruvica is jointly developed and commercialized by Pharmacyclics LLC, an AbbVie company and Janssen Biotech, Inc.

"This approval represents a significant leap forward for patients diagnosed with CLL who may want to consider an alternative first-line treatment to traditional chemotherapy," said Michael Severino, M.D., executive vice president, research and development and chief scientific officer, AbbVie. "AbbVie is committed to making significant improvements in the lives of patients with hematologic malignancies and will continue to explore ways to improve treatment options for patients."
The prevalence of CLL is approximately 115,000 patients in the U.S.2 with approximately 15,000 newly diagnosed patients every year.3 CLL is a disease of elderly patients, with an average diagnosis age of 71.3
The National Comprehensive Cancer Network (NCCN) recently published an update to its clinical practice guidelines for non-Hodgkin's lymphomas, granting Imbruvica a category 1 recommendation for certain CLL patients, the highest recommendation assigned by the organization. Specifically, NCCN recommends Imbruvica as a first-line treatment option for frail CLL patients with significant comorbidities, as well as for CLL patients with or without del 17p or the genetic mutation TP53 who are 70 years or older, or younger patients with significant comorbidities. The NCCN guidelines inform prescribing and reimbursement practices in many institutions in the U.S. and internationally.
"The progression-free survival data seen in these previously untreated CLL patients are strong and encouraging," said Dr. Jan Burger, M.D., Ph.D., Associate Professor, Department of Leukemia, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX and the RESONATE-2 lead study investigator.* "This is especially important for first-line CLL patients, when considering the safety profile. This treatment represents another option for these patients."
FDA Approves Imbruvica (ibrutinib) for the First-Line Treatment of Chronic Lymphocytic Leukemia

Monday, May 23, 2016

FDA Expands Use of Xalkori (crizotinib) to Treat ROS-1 Positive Non-Small Cell Lung Cancer

In continuation of my update on Xalkori (crizotinib) 

Crizotinib.svg


The U.S. Food and Drug Administration today approved Xalkori (crizotinib) to treat people with advanced (metastatic) non-small cell lung cancer (NSCLC) whose tumors have an ROS-1 gene alteration. Xalkori is the first and only FDA approved treatment for patients with ROS-1 positive NSCLC.

Lung cancer is the leading cause of cancer-related deaths in the United States, with an estimated 221,200 new diagnoses and 158,040 deaths in 2015, according to the National Cancer Institute. ROS-1 gene alterations, thought to lead to abnormal cells, have been identified in various cancers, including NSCLC. ROS-1 gene alterations are present in approximately 1 percent of patients with NSCLC. The overall patient and disease characteristics of NSCLC with ROS-1 gene alterations appear similar to NSCLC with anaplastic lymphoma kinase (ALK) gene alterations, for which crizotinib use was previously approved. Xalkori was approved to treat certain patients with late-stage NSCLC that expresses an abnormal ALK gene in 2011.
“Lung cancer is difficult to treat, in part, because patients have different mutations, some of which are rare,” said Richard Pazdur, M.D., director of the Office of Hematology and Oncology Products in the FDA’s Center for Drug Evaluation and Research. “The expanded use of Xalkori will provide a valuable treatment option for patients with the rare and difficult to treat ROS-1 gene mutation by giving health care practitioners a more personalized way of targeting ROS-1 positive NSCLC.”
Xalkori is an oral medication that blocks the activity of the ROS-1 protein in tumors that have ROS-1 gene alterations. This effect on ROS-1 may prevent NSCLC from growing and spreading.
The safety and efficacy of Xalkori for the treatment of patients with ROS-1 positive tumors were evaluated in a multi-center, single-arm study of 50 patients with ROS-1 positive metastatic NSCLC. Patients received Xalkori twice daily to measure the drug’s effect on their lung cancer tumors. The studies were designed to measure overall response rate, the percentage of patients who experienced complete or partial shrinkage of their tumors. Results showed 66 percent of participants experienced a complete or partial shrinkage of their NSCLC tumors, an effect that lasted a median of 18.3 months.

Friday, May 20, 2016

RUVICA (ibrutinib) capsules approved for treatment-naïve CLL patients


In continuation of my update on ibrutinib

Ibrutinib.svg

The U.S. Food and Drug Administration (FDA) has approved IMBRUVICA® (ibrutinib) capsules for treatment-naïve patients with chronic lymphocytic leukemia (CLL). The approval is based on data from the Phase 3 RESONATE-2 (PCYC-1115) study, the first head-to-head clinical trial comparing IMBRUVICA to a chemotherapy agent. Results showed IMBRUVICA significantly extended progression-free survival (PFS; the primary endpoint) and increased overall response rate (ORR; a key secondary endpoint) compared to chlorambucil in previously untreated patients with CLL age 65 or older. IMBRUVICA is now approved for use in all lines of CLL therapy, considerably expanding the number of patients who may benefit from this treatment. This broadens the indication beyond the initial CLL approval in February 2014 for the treatment of patients with CLL who have received at least one prior therapy and in July 2014 for CLL patients with del 17p, a genetic mutation typically associated with poor treatment outcomes. IMBRUVICA is jointly developed and commercialized by Janssen Biotech, Inc. and Pharmacyclics LLC, an AbbVie company.

On a related front, the National Comprehensive Cancer Network® (NCCN) published an update on February 17 to its Clinical Practice Guidelines for non-Hodgkin's lymphomas recommending IMBRUVICA for certain first-line CLL patients.

"People living with CLL who have not been previously treated now have an option that significantly improved progression-free survival when compared to the oral chemotherapy used in the RESONATE-2 trial," said Jan Burger, M.D., Ph.D., Associate Professor, Department of Leukemia, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX and RESONATE-2 study lead investigator. "The results seen in the RESONATE-2 clinical trial are truly compelling and make this medicine an attractive first-line treatment option for clinicians in the hematology space."



The U.S. Food and Drug Administration has approved IMBRUVICA (ibrutinib) capsules for treatment-naïve patients with chronic lymphocytic leukemia (CLL).

Thursday, May 19, 2016

Novartis announces FDA approval of Afinitor for progressive, nonfunctional neuroendocrine tumors of GI

Everolimus.svg 

In continuation of my update  on Everolimus 

Novartis today announced that the United States Food and Drug Administration (FDA) approved Afinitor® (everolimus) tablets for the treatment of adult patients with progressive, well-differentiated, nonfunctional neuroendocrine tumors (NET) of gastrointestinal (GI) or lung origin that are unresectable, locally advanced or metastatic. Afinitor received a priority review designation providing a shortened review period for drugs that treat serious conditions and offer a significant improvement in safety or effectiveness.

"Afinitor is the first treatment approved for progressive, nonfunctional NET of lung origin, and one of very few options available for progressive, nonfunctional GI NET, representing a shift in the treatment paradigm for these cancers," said Bruno Strigini, President, Novartis Oncology. "We are proud of our Afinitor development program, which has translated to meaningful benefits for patients with several different cancers and rare diseases."

Neuroendocrine tumors are a rare type of cancer that originate in neuroendocrine cells throughout the body, and are most often found in the GI tract, lungs or pancreas. NET can be defined as functional or nonfunctional. Functional NET are characterized by symptoms caused by the oversecretion of hormones and other substances. Nonfunctional NET may be characterized by symptoms caused by tumor growth, such as intestinal obstruction, pain and bleeding for GI NET, and asthma, chronic obstructive pulmonary disease and pneumonia for lung NET. More than 70% of patients with NET have nonfunctional tumors. At the time of diagnosis, 5%-44% (depending on site of tumor origin) of patients with NET in the GI tract and 28% of patients with lung NET have advanced disease, meaning the cancer has spread to other areas of the body, making it difficult to treat. Progression, or the continued growth or spread of the tumor, is typically associated with poor outcomes.

Wednesday, May 18, 2016

New drug shows promise against Huntington's disease

A drug that would be the first to target the cause of Huntington's disease (HD) is effective and safe when tested in mice and monkeys, according to data released today that will be presented at the American Academy of Neurology's 68th Annual Meeting in Vancouver, Canada, April 15 to 21, 2016. A study to test the drug in humans has begun.

Huntington's disease is a rare, hereditary disease that causes uncontrolled movements, loss of intellectual abilities, emotional problems and eventually death. The disease is passed from parent to child through a mutation in the huntingtin gene. The mutation results in the production of a disease-causing huntingtin protein. Each child has a 50/50 chance of inheriting the gene mutation. Everyone who inherits the mutated gene will eventually develop the disease.

The new drug, called IONIS-HTTRx, is an antisense drug that acts as a "gene silencer" to inhibit the production of huntingtin protein in people with Huntington's disease.
"It is very exciting to have the possibility of a treatment that could alter the course of this devastating disease," said clinical study principal investigator Blair R. Leavitt, MD, of the University of British Columbia in Vancouver. "Right now we only have treatments that work on the symptoms of the disease." Leavitt notes the drug is still years away from being used in human clinical practice.

Earlier studies in mouse models of Huntington's disease showed that treatment with antisense drugs delays disease progression and results in sustained reversal of the disease phenotype. In YAC128 mice, a transgenic model of HD, motor deficits improved within one month of initiating antisense treatment and were restored to normal at two months after treatment termination. Motor skills of antisense-treated BACHD mice, another transgenic model of HD, improved eight weeks after initiation of treatment and persisted for at least nine months after treatment termination. In monkeys, dose-dependent reductions in HTT mRNA and Htt protein throughout the central nervous system were observed after intrathecal administration of an antisense drug. Reduction of cortical huntingtin levels by 50 percent was readily achieved in monkeys and correlated with 15 to 20 percent reduction in the caudate. In further tests in rodents and monkeys, IONIS-HTTRx was found to be well-tolerated without any dose-limiting side effects.